1,585 research outputs found

    The Increasing Diversity of America\u27s Youth

    Get PDF
    This brief documents how unfolding demographic forces have placed today’s children and youth at the forefront of America’s new racial and ethnic diversity. Authors Kenneth M. Johnson, Andrew Schaefer, Daniel T. Lichter, and Luke T. Rogers discuss how the rapidly changing racial and ethnic composition of the youth population has important implications for intergroup relations, ethnic identities, and electoral politics. They report that diversity is increasing among America’s youth because there are more minority children and fewer non-Hispanic white children. Minority births exceeded non-Hispanic white births for the first time in U.S. history in 2011 according to Census Bureau estimates. Both the declining number of non-Hispanic white women of prime child-bearing and growing numbers of minority women contributed to this change as did differential fertility rates. The largest gains in child diversity between 2000 and 2012 were in suburban and smaller metropolitan areas. Yet, child diversity is geographically uneven, with minimal diversity in some areas of the country and significant diversity in other areas. They conclude that natural population increase—particularly fertility rates—will continue to reshape the racial and ethnic mix of the country, and this change will be reflected first among the nation’s youngest residents

    Gadids and Alewives: Structure Within Complexity in the Gulf of Maine

    Get PDF
    The collapse of Atlantic cod (Gadus morhua) along the northern 240 km of New England\u27s historically productive coastal shelf has continued for nearly twenty years. Resident spawning groups and their subpopulations have disappeared and have yet to recover, causing local groundfish fisheries to collapse. Three additional gadid species, haddock (Melanogrammus aeglefinus), pollock (Pollachius virens), and white hake (Urophyscus tenuis) collapsed along the northern coastal shelf during the same period, raising concerns that their resident coastal groups were part of a metapopulation and may have also been lost. Analysis of their distribution and movements in the 1920s appeared to corroborate this. The four gadids had clusters of resident coastal groups along the coastal shelf that coexisted in the same area. Cod, white hake and pollock appeared to exhibit metapopulation characteristics, having resident and migrating components distributed along the coast in three different areas, with migrating components arriving and leaving along common migration routes fall when alewives left. The groups were centered near rivers with alewife spawning runs and disappeared from the area during the 1950s after alewives (Alosa pseudoharengus) declined locally. The results suggest that large, stable concentrations of young-of-the-year alewives were a factor in where resident and migrating gadid groups were located

    Gadids and Alewives: Structure within complexity in the Gulf of Maine 2013

    Get PDF

    Viscous Cross-waves: An Analytical Treatment

    Get PDF
    Viscous effects on the excitation of cross‐waves in a semi‐infinite box of finite depth and width are considered. A formalism using matched asymptotic expansions and an improved method of computing the solvability condition is used to derive the relative contributions of the free‐surface, sidewall, bottom, and wavemaker viscous boundary layers. This analysis yields an expression for the damping coefficient previously incorporated on heuristic grounds. In addition, three new contributions are found: a viscous detuning of the resonant frequency, a slow spatial variation in the coupling to the progressive wave, and a viscous correction to the wavemaker boundary condition. The wavemaker boundary condition breaks the symmetry of the linear neutral stability curve at leading order for many geometries of experimental interest

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones

    Get PDF
    The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse

    What influences the speed of prototyping? An empirical investigation of twenty software startups

    Full text link
    It is essential for startups to quickly experiment business ideas by building tangible prototypes and collecting user feedback on them. As prototyping is an inevitable part of learning for early stage software startups, how fast startups can learn depends on how fast they can prototype. Despite of the importance, there is a lack of research about prototyping in software startups. In this study, we aimed at understanding what are factors influencing different types of prototyping activities. We conducted a multiple case study on twenty European software startups. The results are two folds, firstly we propose a prototype-centric learning model in early stage software startups. Secondly, we identify factors occur as barriers but also facilitators for prototyping in early stage software startups. The factors are grouped into (1) artifacts, (2) team competence, (3) collaboration, (4) customer and (5) process dimensions. To speed up a startups progress at the early stage, it is important to incorporate the learning objective into a well-defined collaborative approach of prototypingComment: This is the author's version of the work. Copyright owner's version can be accessed at doi.org/10.1007/978-3-319-57633-6_2, XP2017, Cologne, German

    Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes

    Get PDF
    Chromosome aberrations in two glioma cell lines were analyzed using biotinylated DNA library probes that specifically decorate chromosomes 1, 4, 7, 18 and 22 from pter to qter. Numerical changes, deletions and rearrangements of these chromosomes were radily visualized in metaphase spreads, as well as in early prophase and interphase nuclei. Complete chromosomes, deleted chromosomes and segments of translocated chromosomes were rapidly delineated in very complex karyotypes. Simultaneous hybridizations with additional subregional probes were used to further define aberrant chromosomes. Digital image analysis was used to quantitate the total complement of specific chromosomal DNAs in individual metaphase and interphase cells of each cell line. In spite of the fact that both glioma lines have been passaged in vitro for many years, an under-representation of chromosome 22 and an over-representation of chromosome 7 (specifically 7p) were observed. These observations agree with previous studies on gliomas. In addition, sequences of chromosome 4 were also found to be under-represented, especially in TC 593. These analyses indicate the power of these methods for pinpointing chromosome segments that are altered in specific types of tumors
    corecore